RESISTANCE

☐ Electrical conductors (metals) have low resistance.

☐ Electrical insulators (nonmetals) have high resistance.

Resistance is measured in $Ohms(\Omega)$

• The symbol for resistance Is "R"

OHM'S LAW

- Ohm's Law defines the relationships between (I) current, (E) voltage, and (R) resistance.
- One ohm is the resistance value through which one volt will maintain a current of one ampere.

Ohm is in honor of Georg Ohm, a German physicist in the 1800s who conducted experiments after Volta's electrochemical cell.

Remember:

- Current refers to the flow of electrons
- Measured in Amps (named after André-Marie Ampère,
 French physicist who discovered electromagnetism in early 1800s)
- Voltage is the Electrical potential
- Measured in Volts (named after Alessandro Volta, Italian physicist who developed the first battery in the late 1700s)

	<u>symbol</u>	<u>unit</u>
Current	(I)	amperes (A)
Voltage	(E)	volts (V)
Resistance	(R)	ohms (Ω)

I = E/R

CURRENT = <u>VOLTAGE</u>

RESISTANCE

I = E/R

Example: How much current does a headlight use with a 12-volt battery if it has a resistance of 3 ohms?

G
$$E=12V$$
 $R=3\Omega$
U $I=?$
E $I=E/R$
S $I=(12V)/(3\Omega)$

I = 4A

I = E/R

Example: How much current flows in a light bulb with 110V of electricity when the filament in the bulb has a resistance of 220Ω ?

```
G E=110V R=220\Omega
U I=?
E I=E/R
S I=(110V)/(220\Omega)
```

I = 0.5A