Calculating Slope of a Line

Position-Time Graphs

The slope represents the average velocity

Calculating Slope of a Line

slope $=\underline{\text { rise }}$ run

, "rise" \rightarrow change in distance
, "run" \rightarrow change in time

Units for Slope

- If the position is given in meters and the time is given in seconds, then the units will be m / s

Position-Time Graph

Straight line $=$ constant slope $=$ constant velocity

Flat line = zero slope = zero velocity

Curved line $=$ changing slope $=$ changing velocity = ACCELERATION

What time period was this object's velocity decreasing?

Best fit

										\rightarrow
			1				i			
\bigcirc										

