

- Force: a pusher pull that acts on an object
- A force that can cause a resting object to move, of it can accelerate a moving object lijechanging the objeet's speed or direction

NEWTONS

- Force is measured in Newtons (N)
- Named after Sir Isaac Newton
- One Newton is the force that causes a 1 kg mass to accelerate at a rate of $1 \mathrm{~m} / \mathrm{s}^{2} .\left(\mathbf{1 N}=1 \mathrm{~kg} \times \mathrm{m} / \mathrm{s}^{3}\right)$

NETHORCE

- Net force: overallforce acting on an object after all of the forces are combined.
- Forces in the sarne direction= add together
- Forces in opposite .directions= subtract from each other

FRICTION

- All moving objects are subject to friction- a force that opposes the motion of objects that touch as they move past each other.
- Friction acts at the surface where object
 are in contact with each other.

BALANCED FORCES

- Forces that combine that produce a net force of zero and there is no change in the object's motion
- Ex: tug of war, arm wrestling

UNBALANCED FORCE

- Force that results when the net force acting on an obječt is not equal to zero, and it accelerates
- Ex: pushing a resting book on table, winner or loser in fug of war

STATICFRICTION

- The friction force that acts on objects that are not moving
- Always acts in the direction opposite of, the applied force
- Ex: steps-friction between the ground and your foot kcep your foot from slipping

SLIDING FRICTION

- Force that opposes the direction of motion of an object as it slides over a surface
- Sliding friction is less than static friction, so less fore is needed to keep an object moving than to start it moving
- Ex: moving a box across the flogr

ROLLING FRICTION

- Friction force that acts on rolling objects
- This is about 100-1000 times less than the force of static or sliding friction
- Ex: Moxing dollies, ball bearings

Push on wheel

Friction resists sliding

FLUID FRICTION

- Force that opposes the motion of an object through a fluid
- Fluid friction acting on a object moving through air is known as air resistance
- Ex: stirring cake báatter

GRAVITEY

- Gravity- force that acts between any two masses.
- Attractive force pulling objects together-
- Ex: Earth's gravity acts downward toward the ce ter of Earth

GRAVLEY

- Both gravity and air resistance affect the motion of falling object
- Gravity causes objects to accelerate downwa whereas air resistance acts in: the direction opposite to the motion and reduces acceleration.

TERMINAL VELOCITY

- Terminal velocity constant velocity of a falling object when the force of air resistance equals the force of gravity.

Still falling.
but there
is sudden
deceleration
when the
parachute
opens

NEWTONS LAWS OFMOTION

FLRST LAW

- The state of motion ofan object does not change as long as the net force acting on the object is zero
- An object in motion will remain in motion, and an object at rest will remainat rest unless acted on by an outside force.
- Sometimes called the law of inertia
- Inertia is the tendency of an object to resist change in its motien

FIRSTLAW

With no outside forces, this object will
never move

With no outside forces, this object will
never stop
https://www.youtu wioum/watco.v= OHw 80 HXSuAQ

SECOND IAAW

- Acceleration of an object is equal to the net force acting on it divided by the objects mass
- Mass is the measure of inertia of an object and depends on the anount of matter the object contans
- $a=$ acceleration $\mathrm{F}=$ net foree $\mathrm{m}=$ mass

SECOND LAW

F=ma

THE MORE FORCE... THE MORE ACCELERATION

https://www.youtube.com/watch?v=nO7XeYPi2FU

THIRD LAW

- Whenever one objectexerts a force on a second object, the second object exerts and equal and opposite force on the first object
- These two forces are called ACCION and REACTION forces

THIRD LAW

Force of A on $\mathrm{B} \quad$ Force of B on A

https://www.youtube.com/watch?v=MUgFT1hRTE4

ACTION AND REACTION FORCES:

- Action- reaction forces are equal in size and opposite in direction
- May or may not result in motion
- Ex: Bunper cars (motionoccurs), or pushing gainst a wall (no motion)

MASS V / S WEIGHT

- Weight and massare NOT the same thing.
- Weight is the force-of gravity acting on an object
- Mass is the measure of inertia of an object and depends on the amount of matter the object contains
- $\mathrm{W}=$ mass x acceleration due to gravity

DO YOU WHIGHT MORE ON EARTH OR THE MOQN?

- Mass is the same in both locations
- Acceleration due to gravity on Earth is 9.6 $\mathrm{m} / \mathrm{s} 2$, and the moon's acceleration due to gravity is $1 / 6^{\text {th }}$ that on Earth
- So, you weigh only $1 \% 6^{\text {th }}$ as much on the moon as on Earth!:

MASS V/S WEIGHT

MOMENTUM

- Momentum-is
the product of an object's mass and its velocity
- Momentum (p)= $\mathbf{m x} \mathbf{V}$
- Momentum units= $\mathbf{k g x} \mathbf{~ m / s}$

MOMENTUM

- An object has large momentum if the product of its mass and velocity is large
- An object with large momentum is hard to stop
- Momen um for an y object at restis zero.

Your truck has brakes...the massive hunk of stone doesn't

